2023
[1] Li Y, Liao M, Han J, et al. A dehydrated W-type fluorotellurite fiber for mid-infrared supercontinuum generation[J]. Optical Fiber Technology, 2023, 77: 103268.
[2] He D, Liao M, Hu L, et al. Brillouin gain spectrum characterization in an acoustic anti-guided delivery fiber for high power narrow linewidth laser[J]. Optics Express, 2023, 31(2): 1888.
[3] Ma X, Zhang K, Li C, et al. Decaying dynamics of harmonic mode-locking in a SESAM-based mode-locked fiber laser[J]. Optics Express, 2023, 31(22): 36350.
[4] Xu G, Zhang K, Liao M, et al. Modulating anti-dark vector bisolitons[J]. Optik, 2023, 281: 170815.
[5] Peng Y, Xu G, Zhang K, et al. Modulating anti-dark vector solitons[J]. Laser Physics, 2023, 33(9): 095101.
[6] Xu G, Peng Y, Tang Y, et al. Modulating dual-wavelength optical fiber vector solitons[J]. Laser Physics, 2023, 33(12): 125102.
[7] Yu S, Liao M, Chen L, et al. Strong Anti-Stokes and Flat Supercontinuum in Specified Band Based on Non-Degenerate Raman Four-Wave Mixing Modulation[J]. Journal of Lightwave Technology, 2023, 41(18): 6053–6058.
2022
[8] Ma X, Zheng Z, Ye S, et al. 2 μm sub-GHz harmonic mode-locked soliton generation based on a Bi 2 S 3 saturable absorber[J]. Optics Express, 2022, 30(2): 2278.
[9] Chen L, Liao M, Bi W, et al. Coherent Supercontinuum Generation in Step-Index Heavily Ge-Doped Silica Fibers With All Normal Dispersion[J]. IEEE Photonics Journal, 2022, 14(4): 1–6.
[10] Li Y, Liao M, Han J, et al. Fabrication of Step?Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum[J]. Crystals, 2022, 12(11): 1649.
[11] Xia Q, Bi W, Liao M, et al. High relative-intensity blue light of supercontinuum generation in photonic crystal fibers[J]. Journal of the Optical Society of America B, 2022, 39(3): 764.
[12] Zhou Y, Zhang K, Luo C, et al. Manipulating vector solitons with super-sech pulse shapes[J]. Chinese Physics B, 2022, 31(5): 054203.
[13] Zhang K, Luo C, Jia J, et al. Modulating chirped Gaussian vector solitons with group-velocity dispersion[J]. Optik, 2022, 266: 169651.
[14] Zhang K, Ma X, Yang M, et al. Modulating super-sech vector bisolitons[J]. Optik, 2022, 260: 169134.
[15] Xu G, Zhang K, Luo C, et al. Modulating vector soliton molecules[J]. Optik, 2022, 271: 170140.
[16] Zhou Y, Zhang K, Liao M, et al. Operating Vector Solitons with Chirped Sech Pulse Shapes[J]. Photonics, 2022, 9(3): 143.
[17] Gao W, Dai W, Zheng Z, et al. Simulation and analysis of supercontinuum generation in the waveband up to 25 μm[J]. Applied Optics, 2022, 61(23): 6697.
[18] Chen L, Liao M, Li X, et al. Tunable Ultraviolet Second Harmonics Generation Pumped by Supercontinuum Laser[J]. IEEE Photonics Journal, 2022, 14(1): 1–7.
2021
[19] Ma X, Chen W, Tong L, et al. Experimental demonstration of harmonic mode-locking in Sb2Se3-based thulium-doped fiber laser[J]. Optics & Laser Technology, 2021, 143: 107286.
[20] Ma X, Chen W, Tong L, et al. In2S3-based saturable absorber for passively harmonic mode-locking in 2 μm region[J]. Optics & Laser Technology, 2022, 145: 107476.
[21] Zhou Y, Lin X, Liao M, et al. Modulating self-similar vector bisolitons[J]. Optik, 2021, 244: 167616.
[22] Zhou Y, Lin X, Liao M, et al. Modulating vector bisolitons with chirped Gaussian pulse shapes[J]. Optik, 2021, 242: 167185.
[23] Zhou Y, Lin X, Li Y, et al. Modulation of dark vector bisolitons[J]. Optik, 2021, 240: 166832.
[24] Ma X, Zhang Z, Jiang W, et al. Passively mode-locked thulium doped fiber laser based on SnSe nanoparticles as a saturable absorber[J]. Optics & Laser Technology, 2021, 138: 106870.
[25] Zhou Y, Lin X, Liao M, et al. Polarization manipulation of bright-dark vector bisolitons*[J]. Chinese Physics B, 2021, 30(3): 034208.
[26] Zhou Y, Li X, Zhao G, et al. Polarization modulation of vector bisolitons[J]. Optik, 2021, 227: 166022.
[27] Gao W, Jiang W, Tong L, et al. Toward generation of mid-infrared orbital angular momentum beams by tailoring four-wave mixing in chalcogenide photonic crystal fiber[J]. Journal of the Optical Society of America B, 2021, 38(3): 692.
2020
[28] Gao W, Zhang X, Jiang W, et al. Characteristics of vector beams in mid-infrared waveband in an As2Se3 photonic crystal fiber with small hollow core[J]. Optical Fiber Technology, 2020, 55: 102152.
[29] Zhou Y, Li Y, Li Y, et al. Manipulation of parabolic polarization- and group-velocity- locked vector solitons[J]. Optik, 2020, 224: 165699.
[30] Zhou Y, Li Y, Li X, et al. Manipulation of polarization- and group-velocity-locked dark vector solitons[J]. Optik, 2020, 203: 163925.
[31] Zhou Y, Li Y, Li X, et al. Pulse shaping of bright-dark vector soliton pair*[J]. Chinese Physics B, 2020, 29(5): 054202.
[32] Gao W, Chen L, Jiang W, et al. Stimulated Brillouin scattering by the interaction between different-order optical and acoustical modes in an As2Se3 photonic crystal fiber[J]. Chinese Optics Letters, 2020, 18(1): 010602.
[33] Bi W, Li X, Liao M, et al. Ultraviolet-Extended Supercontinuum Generation in Zero-Dispersion Wavelength Decreasing Photonic Crystal Fibers[J]. IEEE Photonics Journal, 2020, 12(6): 1–8.
2019
[34] Zhou Y, Zhang Z, Jiang W, et al. A passively mode-locked thulium-doped fiber laser based on a D-shaped fiber deposited with PbS nanoparticles[J]. Journal of Materials Chemistry C, 2019, 7(36): 11215–11219.
[35] Li Y, Wang L, Liao M, et al. A Step-Index Silicate Nonlinear Fiber With All Normal Flattened Dispersion for Coherent Supercontinuum[J]. IEEE Photonics Journal, 2019, 11(5): 1–8.
[36] Chen L, Zhang W, Gao P, et al. Characteristics of forward stimulated Brillouin scattering effect in silica fibers with different microstructures[J]. Optik, 2019, 179: 82–88.
[37] Gao W, Zhang X, Jiang W, et al. Characteristics of vector beams in mid-infrared waveband in an As2Se3 photonic crystal fiber with small hollow core[J]. Optical Fiber Technology, 2020, 55: 102152.
[38] Wang P, Chen L, Zhang X, et al. Correction to: Investigation on four-wave mixing toward mid-infrared waveband in tellurite photonic crystal fiber[J]. Optical and Quantum Electronics, 2019, 51(3): 75.
[39] Wu D, Yu F, Liu Y, et al. Dependence of Waveguide Properties of Anti-Resonant Hollow-Core Fiber on Refractive Index of Cladding Material[J]. Journal of Lightwave Technology, 2019, 37(21): 5593–5699.
[40] Zhou Y, Li Y, Zhang R, et al. Generation of pseudo-high-order polarization-locked vector solitons with super-Gaussian pulses[J]. Optik, 2019, 194: 163132.
[41] Zhang R-L, Wang J, Liao M-S, et al. Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber[J]. Chinese Physics B, 2019, 28(3): 034203.
[42] Zhou Y, Li Y, Li Y, et al. Manipulation of parabolic polarization- and group-velocity- locked vector solitons[J]. Optik, 2020, 224: 165699.
[43] Zhou Y, Li Y, Li X, et al. Manipulation of polarization- and group-velocity-locked dark vector solitons[J]. Optik, 2020, 203: 163925.
[44] Bi W, Liu Y, Li X, et al. Micro-joule level visible supercontinuum generation in seven-core photonic crystal fibers pumped by a 515 nm laser[J]. Optics Letters, 2019, 44(20): 5041.
[45] Gao W, Gao P, Zhang X, et al. Multi-wavelength Brillouin-erbium fiber laser with more than 95 lines based on a dual-ring structure[J]. Japanese Journal of Applied Physics, 2019, 58(8): 082003.
[46] Wang P, Chen L, Zhang X, et al. Multi-wavelength fiber laser generated by Brillouin-comb assisted four-wave mixing[J]. Optics Communications, 2019, 444: 63–67.
[47] Gao W, Zhang X, Zhang Z, et al. Numerical investigation on a new designed hollow-core photonic crystal fiber with large modal separation[J]. Optical and Quantum Electronics, 2019, 51(11): 347.
[48] Zhang L, Jiang Y, Wang Z, et al. Perfluoride glass ceramic transmitting from UV to far-IR tailored by one step[J]. Optics Letters, 2019, 44(19): 4857.
[49] Zhou Y, Li Y, Li X, et al. Pulse shaping of bright-dark vector soliton pair*[J]. Chinese Physics B, 2020, 29(5): 054202.
[50] Li Y, Wang L, Liao M, et al. Step-index fluoride fibers with all-normal dispersion for coherent mid-infrared supercontinuum generation[J]. Journal of the Optical Society of America B, 2019, 36(11): 2972.
[51] Gao W, Chen L, Jiang W, et al. Stimulated Brillouin scattering by the interaction between different-order optical and acoustical modes in an As2Se3 photonic crystal fiber[J]. Chinese Optics Letters, 2020, 18(1): 010602.
[52] Li Y, Wang L, Liao M, et al. Suspended-core fluoride fiber for broadband supercontinuum generation[J]. Optical Materials, 2019, 96: 109281.
[53] Zhang R, Wang J, Liao M, et al. Tunable Q-Switched Fiber Laser Based on a Graphene Saturable Absorber Without Additional Tuning Element[J]. IEEE Photonics Journal, 2019, 11(1): 1–10.
[54] Yang Y, Bi W, Li X, et al. Ultrabroadband supercontinuum generation through filamentation in a lead fluoride crystal[J]. Journal of the Optical Society of America B, 2019, 36(2): A1.
[55] Bi W, Li X, Liao M, et al. Ultraviolet-Extended Supercontinuum Generation in Zero-Dispersion Wavelength Decreasing Photonic Crystal Fibers[J]. IEEE Photonics Journal, 2020, 12(6): 1–8.
2018
[56] Shen Y, Wang L, Liao M, et al. A Double-Cladding Single Polarization Photonic Crystal Fiber and Its Structure Deviation Tolerance[J]. IEEE Photonics Journal, 2018, 10(6): 1–10.
[57] Huang C, Liao M, Bi W, et al. Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region[J]. Optics Letters, 2018, 43(3): 486.
[58] Wang P, Chen L, Zhang X, et al. Investigation on four-wave mixing toward mid-infrared waveband in tellurite photonic crystal fiber[J]. Optical and Quantum Electronics, 2018, 50(12): 415.
[59] Gao W, Li X, Wang P, et al. Investigation on sensing characteristics of fiber Bragg gratings based on soft glass fibers[J]. Optik, 2018, 156: 13–21.
[60] Chen L, Gao W, Chen L, et al. Numerical study on supercontinuum generation by different optical modes in AsSe_2-As_2S_5 chalcogenide microstructured fiber[J]. Applied Optics, 2018, 57(3): 382.
[61] Huang C, Liao M, Bi W, et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion[J]. Photonics Research, 2018, 6(6): 601.
2017
[62] Zhao G, Jin W, Fang Y, et al. Comparative study of 27 μm emission of Ho^3+ desensitized Er^3+ in tellurite and bismuth glass[J]. Optical Materials Express, 2017, 7(4): 1147.
[63] Yang Y, Liao M, Li X, et al. Filamentation and supercontinuum generation in lanthanum glass[J]. Journal of Applied Physics, 2017, 121(2): 023107.
[64] Bi W, Liao M, Liu Y, et al. Highly coherent visible dispersive wave radiation in suspended core fibers[J]. Journal of Applied Physics, 2017, 122(15): 153106.
[65] Xu Q, Gao W, Li X, et al. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core microstructured optical fibers[J]. Optik, 2017, 133: 51–59.
[66] Ni C, Gao W, Chen X, et al. Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber[J]. Applied Optics, 2017, 56(33): 9171.
2016
[67] Cheng T, Liao M, Xue X, et al. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation[J]. Optical Materials, 2016, 53: 39–43.
[68] Zhao G, Jin W, Fang Y, et al. Broadband mid-infrared emission around 2.9 μm in Dy 3+ doped bismuth germanate glass[J]. Materials Research Bulletin, 2016, 84: 378–381.
[69] Gao W, Xu Q, Li X, et al. Experimental investigation on supercontinuum generation by single, dual, and triple wavelength pumping in a silica photonic crystal fiber[J]. Applied Optics, 2016, 55(33): 9514.
[70] Bi W, Gao J, Li X, et al. Mid-infrared supercontinuum generation in silica photonic crystal fibers[J]. Applied Optics, 2016, 55(23): 6355.
[71] Li X, Li J, Cheng T, et al. Silicate Glass Hybrid Fiber With All-Normal Dispersion for Coherent Supercontinuum[J]. Journal of Lightwave Technology, 2016, 34(15): 3523–3528.
[72] Gao W, Cheng T, Xue X, et al. Stimulated Raman scattering in AsSe_2-As_2S_5 chalcogenide microstructured optical fiber with all-solid core[J]. Optics Express, 2016, 24(4): 3278.
[73] Gao W, Xu Q, Li X, et al. Supercontinuum generation in a step-index chalcogenide fiber with AsSe 2 core and As 2 S 5 cladding[J]. Japanese Journal of Applied Physics, 2016, 55(12): 122201.
[74] Bi W, Li X, Xing Z, et al. Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse[J]. Journal of Applied Physics, 2016, 119(4): 043102.
2015
[75] Gao S, Kuan P-W, Liu X, et al. $\sim 2$ -$\mu \text{m}$ Single-Mode Laser Output in Tm 3+ -Doped Tellurium Germanate Double-Cladding Fiber[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1702–1704.
[76] Tianfeng Xue T X, Liyan Zhang L Z, Lei Wen L W, et al. Er3+-doped fluorogallate glass for mid-infrared applications[J]. Chinese Optics Letters, 2015, 13(8): 081602–081606.
[77] Li X, Chen W, Xue T, et al. Highly coherent red-shifted dispersive wave generation around 1.3 μ m for efficient wavelength conversion[J]. Journal of Applied Physics, 2015, 117(10): 103103.
[78] Bi W, Li X, Gao J, et al. Numerical simulations of the ultrabroadband supercontinuum generation by dual-wavelength pumping in photonic crystal fiber with two zero dispersion wavelengths[J]. Applied Optics, 2015, 54(14): 4542.
[79] Gao S, Kuan P, Li X, et al. Tm3+-doped tellurium germanate glass and its double-cladding fiber for 2μm laser[J]. Materials Letters, 2015, 143: 60–62.
2014
[80] Li X, Chen W, Xue T, et al. Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers[J]. Optics Express, 2014, 22(20): 24179.
[81] Liu L, Kang Z, Li Q, et al. Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber[J]. Applied Physics Letters, 2014, 105(18): 181113.
[82] Cheng T, Kanou Y, Asano K, et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber[J]. Applied Physics Letters, 2014, 104(12): 121911.
[83] Cheng T, Usaki R, Duan Z, et al. Soliton self-frequency shift and third-harmonic generation in a four-hole As_2S_5 microstructured optical fiber[J]. Optics Express, 2014, 22(4): 3740.
[84] Cheng T, Gao W, Liao M, et al. Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference[J]. Optics Letters, 2014, 39(4): 1005.
[85] Cheng T, Gao W, Kawashima H, et al. Widely tunable second-harmonic generation in a chalcogenide–tellurite hybrid optical fiber[J]. Optics Letters, 2014, 39(7): 2145.
2013
[86] Cheng T, Chai L, Liao M, et al. A novel design of cluster-small-core tellurite microstructured optical fiber[J]. Optics Communications, 2013, 294: 172–176.
[87] Tonglei Cheng, Zhongchao Duan, Weiqing Gao, et al. A Novel Seven-Core Multicore Tellurite Fiber[J]. Journal of Lightwave Technology, 2013, 31(11): 1793–1796.
[88] Cheng T, Duan Z, Liao M, et al. A simple all-solid tellurite microstructured optical fiber[J]. Optics Express, 2013, 21(3): 3318.
[89] Gao W, Liao M, Kawashima H, et al. Dark-Square-Pulse Generation in a Ring Cavity With a Tellurite Single-Mode Fiber[J]. IEEE Photonics Technology Letters, 2013, 25(6): 546–549.
[90] Yan X, Liao M, Hoang Tuan T, et al. Defect core tellurite/phosphate composite microstructured optical fiber with four zero dispersion wavelengths[J]. Optics Communications, 2013, 291: 341–344.
[91] Liao M, Gao W, Cheng T, et al. Five-Octave-Spanning Supercontinuum Generation in Fluoride Glass[J]. Applied Physics Express, 2013, 6(3): 032503.
[92] Gao W, El Amraoui M, Liao M, et al. Mid-infrared supercontinuum generation in a suspended-core As_2S_3 chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(8): 9573.
[93] Deng D, Gao W, Liao M, et al. Negative group velocity propagation in a highly nonlinear fiber embedded in a stimulated Brillouin scattering laser ring cavity[J]. Applied Physics Letters, 2013, 103(25): 251110.
[94] Duan Z, Tong H T, Liao M, et al. New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers[J]. Optical Materials, 2013, 35(12): 2473–2479.
[95] Gao W, Liao M, Deng D, et al. Raman comb lasing in a ring cavity with high-birefringence fiber loop mirror[J]. Optics Communications, 2013, 300: 225–229.
[96] Liu L, Meng X, Yin F, et al. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers[J]. Optics Letters, 2013, 38(15): 2851.
[97] Deng D, Gao W, Liao M, et al. Supercontinuum generation from a multiple-ring-holes tellurite microstructured optical fiber pumped by a 2 μm mode-locked picosecond fiber laser[J]. Applied Optics, 2013, 52(16): 3818.
[98] Gao W, Ogawa K, Xue X, et al. Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber[J]. Optics Letters, 2013, 38(14): 2566.
[99] Gao W, Liao M, Cheng T, et al. Tunable Brillouin-Erbium Comb Fiber Laser in a Linear Cavity With a Single-Mode Tellurite Fiber[J]. IEEE Photonics Technology Letters, 2013, 25(1): 51–54.
[100] Liao M, Gao W, Cheng T, et al. Ultrabroad supercontinuum generation through filamentation in tellurite glass[J]. Laser Physics Letters, 2013, 10(3): 036002.
2012
[101] Gao W, Liao M, Kawashima H, et al. 100-Nanosecond-Level Square-Pulse Generation in a Ring Cavity with a Tellurite Single-Mode Fiber[J]. Japanese Journal of Applied Physics, 2012, 51(12R): 122702.
[102] Gao W, Liao M, Yang L, et al. All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber[J]. Applied Optics, 2012, 51(8): 1071.
[103] Gao W, Liao M, Yan X, et al. All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power[J]. Applied Optics, 2012, 51(13): 2346.
[104] Liu L, Tian Q, Liao M, et al. All-optical control of group velocity dispersion in tellurite photonic crystal fibers[J]. Optics Letters, 2012, 37(24): 5124.
[105] Chaudhari C, Liao M, Suzuki T, et al. Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications[J]. Journal of Lightwave Technology, 2012, 30(13): 2069–2076.
[106] Liao M, Gao W, Duan Z, et al. Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length[J]. Optics Express, 2012, 20(2): 1141.
[107] Liao M, Gao W, Cheng T, et al. Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber[J]. Optics Express, 2012, 20(26): B574.
[108] Yan X, Liao M, Tuan T H, et al. Quantum-correlated photon pair generation in tellurite microstructured optical fibers[J]. Applied Physics B, 2012, 109(2): 277–282.
[109] Yan X, Kito C, Miyoshi S, et al. Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber[J]. Journal of the Optical Society of America B, 2012, 29(2): 238.
[110] Cheng T, Cherif R, Liao M, et al. Stimulated Brillouin Scattering of Higher-Order Acoustic Modes in Four-Core Tellurite Microstructured Optical Fiber[J]. Applied Physics Express, 2012, 5(10): 102501.
[111] Liao M, Gao W, Duan Z, et al. Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser[J]. Optics Letters, 2012, 37(11): 2127.
[112] Cheng T, Liao M, Gao W, et al. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber[J]. Optics Express, 2012, 20(27): 28846.
[113] Gao W, Liao M, Kawashima H, et al. Switchable different operation states in an erbium-doped fiber laser cavity with normal dispersion[J]. Optics Communications, 2012, 285(18): 3809–3815.
[114] Gao W, Liao M, Cheng T, et al. Tunable hybrid Brillouin-erbium comb fiber laser in a composite cavity with a single-mode tellurite fiber[J]. Optics Letters, 2012, 37(18): 3786.
2011
[115] Liao M, Qin G, Yan X, et al. A Tellurite Nanowire With Long Suspended Struts for Low-Threshold Single-Mode Supercontinuum Generation[J]. Journal of Lightwave Technology, 2011, 29(2): 194–199.
[116] Liao M, Yan X, Gao W, et al. Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion[J]. Optics Express, 2011, 19(16): 15389.
[117] Duan Z, Liao M, Yan X, et al. Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications[J]. Applied Physics Express, 2011, 4(7): 072502.
[118] Liao M, Yan X, Duan Z, et al. Tellurite Photonic Nanostructured Fiber[J]. Journal of Lightwave Technology, 2011, 29(7): 1018–1025.
[119] Yan X, Qin G, Liao M, et al. Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber[J]. Journal of the Optical Society of America B, 2011, 28(8): 1831.
[120] Gao W, Liao M, Yan X, et al. Visible Light Generation and Its Influence on Supercontinuum in Chalcogenide As$_{2}$S$_{3}$ Microstructured Optical Fiber[J]. Applied Physics Express, 2011, 4(10): 102601.
2010
[121] Liao M, Chaudhari C, Yan X, et al. A suspended core nanofiber with unprecedented large diameter ratio of holey region to core[J]. Optics Express, 2010, 18(9): 9088.
[122] Qin G, Yan X, Kito C, et al. Erratum: “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber” [Appl. Phys. Lett. 95, 161103 (2009)][J]. Applied Physics Letters, 2010, 96(14): 149905.
[123] Qin G, Yan X, Kito C, et al. Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation[J]. Journal of Applied Physics, 2010, 107(4): 043108.
[124] Qin G, Liao M, Chaudhari C, et al. Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers[J]. Optics Letters, 2010, 35(1): 58.
[125] Qin G, Yan X, Kito C, et al. Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation[J]. Optics Letters, 2010, 35(2): 136.
2009
[126] Liao M, Yan X, Qin G, et al. A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation[J]. Optics Express, 2009, 17(18): 15481.
[127] Liao M, Chaudhari C, Qin G, et al. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Optics Express, 2009, 17(24): 21608.
[128] Qin G, Liao M, Chaudhari C, et al. Spectrum controlled supercontinuum generation in microstructure tellurite fibers[J]. Journal of the Ceramic Society of Japan, 2009, 117(1365): 706–708.
[129] Qin G, Yan X, Kito C, et al. Supercontinuum generation spanning over three octaves from UV to 385 μm in a fluoride fiber[J]. Optics Letters, 2009, 34(13): 2015.
[130] Liao M, Chaudhari C, Qin G, et al. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation[J]. Optics Express, 2009, 17(14): 12174.
2008
[132] Qin G, Liao M, Suzuki T, et al. Widely tunable ring-cavity tellurite fiber Raman laser[J]. Optics Letters, 2008, 33(17): 2014.